

Effective from Session: 2018	Effective from Session: 2018-19												
Course Code	CS-606	Title of the Course	Advance Cloud Computing	L	T	P	C						
Year	II	Semester	Ш	4	0	0	4						
Pre-Requisite	None	Co-requisite None											
Course Objectives	and technolo scalable distr computing. N	gical trends, key syster ributed systems, and p Many will go on to code	road-based understanding of state-of-the-art technologies ms and artifacts and research directions in modern data rogramming frameworks enabling the widespread adopt e, design and architect innovative new cloud computing s o exploit opportunities afforded by modern cloud compu	center ion of service	r comp cloud	uting,							

	Course Outcomes
CO1	Apply his knowledge to develop a cloud environment using hardware and software virtualization techniques and perform Map Reduce job
	execution.
CO2	Use common cloud services and components of Hadoop ecosystem in order to solve a real-world problem.
CO3	Utilize the SOA and MVC techniques, classify and cluster Big Data and able to develop a recommendation system.
CO4	Develop highly secured and high-performance cloud applications.
CO5	Develop a research attitude in emerging fields of cloud computing and write
	Quality research papers.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Cloud Computing	Definition(s) of Cloud Computing, Characteristics of Cloud, Cloud Deployment Models, Cloud Service Models, Driving Factors and Challenges of Cloud and Overview of Applications of Cloud. Virtualization, Load Balancing, Scalability & Elasticity, Deployment, Replication, Monitoring, MapReduce, Identity and Access Management, Service Level Agreements and Billing.	8	1
2	Cloud Services and Platforms, Hadoop & MapReduce	various types of cloud services including compute, storage, database, application, analytics, network and deployment services. Overview of Hadoop echo system, MapReduce architecture, MapReduce job execution flow and MapReduce schedulers	8	2
3	Cloud Application Design, Big-Data Analytics	cloud application design considerations, cloud application reference architectures, design methodologies such as SOA, CCM and MVC, data storage technologies and cloud deployment approaches. big data analytics approaches: approaches for clustering big data, approaches for classification of big data and recommendation systems	8	3
4	Cloud Application Benchmarking & Tuning:	Cloud security challenges, approaches for authorization authentication, identify & access management, data security, data integrity encryption & key management. cloud application workload characteristics, performance metrics for cloud applications, cloud application testing, performance testing tools and a load test and bottleneck detection case study.	8	4
5	Cloud Computing Case-Studies	Review of Technical papers from Major journals (IEEE Transactions) and major conferences (IEEE / Springer etc.) on Cloud Computing / Software Engineering / Other Thrust Areas and Presentations by Students on their understanding of the same, after reviewing the papers concerned	8	5

Reference Books:

Cloud Computing A Hands-on Approach by A .Bagha & V.Madisetti [ISBN:978-81-7371-923-3]Published by University Press, pp. 456, Printed in 2014

e-Learning Source:

https://nptel.ac.in/courses/106105167

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	roi	FO2	FO3	FO4	FO3	100	FO7	FU8	FO9	FOIU	FOII	FO12	1301	F302	1303
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2018	3-19												
Course Code	CS-609	Title of the Course	Big Data	L	T	P	C						
Year	II	Semester	Ш	4	0	0	4						
Pre-Requisite	None Co-requisite None 1. To study the basic technologies that forms the foundations of Big Data.												
Course Objectives	2.To study the 3.To understa	e programming aspects and the specialized aspec	at forms the foundations of Big Data. of cloud computing with a view to rapid prototyping of comets of big data including big data application, and big data are on the current research and applications of the Hadoop an	alytic	s.		v.						

	Course Outcomes
	Course Outcomes
CO1	Student must be Able to understand the building blocks of Big Data.
CO2	Student must be able to articulate the programming aspects of cloud computing(map Reduce etc.)
CO3	Student must be able to understand the specialized aspects of big data with the help of different big data applications
CO4	Student must be able to represent the analytical aspects of Big Data.
CO5	Student must be know the recent research trends related to Hadoop File System, MapReduce and Google File System etc.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Data structures in Java	Data structures in Java: Linked List, Stacks, Queues, Sets, Maps; Generics: Generic classes and Type parameters, Implementing Generic Types, Generic Methods, Wrapper Classes, Concept of Serialization	8	1
2	Working with Big Data	Google File System, Hadoop Distributed File System (HDFS) – Building blocks of Hadoop (Namenode, Datanode, Secondary Namenode, JobTracker, TaskTracker), Introducing and Configuring Hadoop cluster (Local, Pseudo-distributed mode, Fully Distributed mode), Configuring XML files	8	2
3	Writing MapReduce Programs	Understanding Hadoop API for MapReduce Framework, Basic programs of Hadoop MapReduce: Driver code, Mapper code, Reducer code, RecordReader, Combiner, Partitioner	8	3
4	Hadoop I/O	The Writable Interface, WritableComparable and comparators, Writable Classes: Writablewrappers for Java primitives, Text, BytesWritable, NullWritable, ObjectWritable and GenericWritable, Writable collections, Implementing a Custom Writable: Implementing a RawComparator for speed, Custom comparators	8	4
5	Pig and hive	Pig Architecture, Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out the Pig Script Interfaces. Hadoop Data with Hive: Saying Hello to Hive, Seeing How the Hive is Put Together, Getting Started with Apache Hive, Examining the Hive Clients, Working with Hive Data Types, Creating and Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and Analyzing Data.	8	5

Reference Books:

- 1. Big Java 4th Edition, Cay Horstmann, Wiley John Wiley & Sons, INC
- 2. Hadoop: The Definitive Guide by Tom White, 3rd Edition, O'reilly, Hadoop in Action by Chuck Lam, MANNING Publ.
- 3. Hadoop: The Definitive Guide by Tom White, 3rd Edition, O'reilly Hadoop for Dummies by Dirk deRoos, Paul C.Zikopoulos, Roman B.Melnyk,Bruce Brown, Rafael Coss

e-Learning Source:

https://nptel.ac.in/courses/106104189

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	FOI	FO2	103	104	103	F00	FO7	FU8	FO9	FOIU	FOII	FO12	1301	F302	1303
CO1	2	2	1	1	1	_	_	_	_	_	_	_		2	2
CO2	2	2	1	1	1	ı	_	_	ı	Ī	Ī		I	2	2
CO3	2	2	1	2	1	_	_	_	-	ı	ı		ı	2	2
CO4	2	2	1	2	1	ı	_	_	ı	Ī	Ī		I	2	2
CO5	2	2	2	3	2	_	_	_	_	_	_	_	_	2	2

Effective from Session: 2018	3-19											
Course Code	CS-626	Title of the Course	Internet of Things	L	Т	P	C					
Year	II	Semester	Ш	4	0	0	4					
Pre-Requisite	None	Co-requisite	None									
	• To	To understand the fundamentals of Internet of Things.										
Course Objectives	• To	build a small low-cost e	embedded system using Arduino / Raspberry Pi or equivalen	t board	ls.							
Course Objectives	• To	apply the concept of Int	ernet of Things in the real-world scenario									
	• Dev	elop web services to ac	cess/control IoT devices.									

	Course Outcomes
CO1	As per the new technology, a student should perform data transfer operations using IOT that help the students to guide in a formal way to communicate over new IOT devises within a short span of time.
CO2	For a given situation, a student should be able to deal with different structural aspects of designing and he/she can know the use of key technologies that would be used by the students to promote the development of a coherent learning program.
CO3	With the enhancement in technology, IOT deals with the challenges and unique product codes for a particular product so a student should be able to tackle the unique codes and he/she should development different approaches that can continue the legacy of an organization.
CO4	During clustering phenomena, a student should be prepared to deal with principles and policies governed according to the company rules so as to provide better identity management using different models like isolated and federated user identity models.
CO5	A student should know the basic idea of security requirements and vulnerabilities in IOT. He/she should be good enough to deal with the establishment of identity for smart applications to be used in IOT

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Introduction Characteristics Physical design Protocols Logical design Enabling technologies IoT Levels Domain Specific IoTsIoT vs M2M.	8	1
2	IoT systems management	IoT systems management IoT Design Methodology Specifications Integration and Application Development.	8	2
3	BUILDING IOT WITH RASPBERRY	BUILDING IOT WITH RASPBERRY PI Physical device Raspberry Pi Interfaces Programming APIs / Packages Web services	8	3
4	BUILDING IOT WITH GALILEO/ARDU INO	BUILDING IOT WITH GALILEO/ARDUINO Intel Galileo Gen2 with Arduino Interfaces Arduino IDE Programming APIs and Hacks	8	4
5	CASE STUDIES	CASE STUDIES and ADVANCED TOPICS Various Real time applications of IoT Connecting IoT to cloud Cloud Storage for Iot Data Analytics for IoT Software & Management Tools for IoT	8	5

Reference Books:

- 1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.
- 2. ArshdeepBahga, Vijay Madisetti, "Internet of Things A hands on approach", Universities Press, 2015.

e-Learning Source:

https://nptel.ac.in/courses/106105166

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO5	PSO6	PSO7
CO																		
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2			
CO2	3	2	1	1	1	2		2	2	2	3	1	3	2	2			
CO3	2	2	2	2	1	1		2		1	1	2		1				
CO4	3	2	1	2		1	1	3		2	3	3		3	1			
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2			

Effective from Session: 2020-21											
Course Code	CS-624	Title of the Course	III 3 e none nental concepts of Statistical data analytics. To learn to analyze of understand the various search methods and visualization technical search methods.								
Year	II	Semester	III	3	1	0	4				
Pre-Requisite	None	Co-requisite	none								
Course Objectives	intelligent to use various	echniques. To unders techniques for mining	tand the various search methods and visualization to	rious search methods and visualization techniques. To learn to m. To learn the probability distributions and density estimations							

	Course Outcomes
CO1	Work with data platform and explore the statistical data analytics techniques.
CO2	Implement statistical analysis techniques for solving practical problems.
CO3	Understand the fundamentals of various data analytics techniques.
CO4	Perform statistical analysis on variety of data.
CO5	Perform appropriate statistical tests and visualize the outcome.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Data	Structured and Unstructured data, Importance, and analytics; Data Sources- Primary and Secondary data, advantages and disadvantages, Properties and data sets; Classic data sets- Iris flower data set, Categorical data analysis, robust statistics, Time series.	8	CO1
2	Data Analytics	Overview, data life cycle, Methodology; Key Stakeholders- Data analyst, Data Scientist; Data Analytics Project- Problem definition, data collection, cleansing data, summarizing, data exploration.	9	CO2
3	Data Visualization	Variable types, Distribution function, Cumulative distribution functions, Histograms, Exploratory data analysis, Modeling output, Statistical predictions; Statistical Techniques for Data Scientist: Linear Regression, types of Linear Regression, Classification, Re-sampling Methods, subset selection, shrinkinage.	7	CO3
4	Statistical Distributions	Poisson Distribution, Binomial Distribution; Theorems and algorithms- Bayes Theorem, K-Nearest Neighbor Algorithm, bagging, ROC Curve Analysis; Hypothesis Testing- Testing of Hypothesis, Population or Universe, Sampling, Parameters of Statistics, Standard Error.	8	CO4
5	Test of Significance	Critical Region, Level of Significance, Errors in Sampling, Steps in Testing of Statistical Hypothesis, Test of Significance for Large Samples, Test of Significance of Small Samples; Time series Analysis- Forecasting models and methods, Chi-square test, t-test, F-Test	8	CO5
	nce Books:			

- $1. \quad M. \ Goyal, "computer-based numerical \& \ statistical \ techniques", Infinity \ Science \ Press \ LLC.$
- 2. Rafael A. Irizarry, "Introduction to Data Science", CRC Press.

e-Learning Source:

Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO CO1	1		2												
		3					2								
CO2				3					1						
CO3				<i>-</i>					1						
CO4					2			3		1					
CO5						3					1				

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation